

3S-2IS

Dual Orientations Irradiance Sensor

USER MANUAL

USER MANUAL TABLE OF CONTENTS

1. Introduction	2
2. Irradiance Sensors Installation	2
2.1. Unpacking and Control	
2.2. Site Requirements and Considerations	
2.3. Preparation of Materials to be Used in Installation	
2.4. Installation	
2.4.1. Installation With Mounting Structure	6
2.4.2. Installation Without Mounting Structure	7
2.5. Inspection and Maintenance	
3. Test And Calibration	8
3.1. Recalibration	
4. Connections	8
5. Configuration and Communication	9
5.1. 3S-IS Configuration Tool	
5.1.1. Establishing Connection	
5.1.2. Change the Modbus Parameters	
5.1.3. Find the Modbus Parameters	12
5.1.4. Firmware Update	12
5.2. Modbus RTU Specifications	
5.2.1. Supported Bus Protocol	
5.2.2.1. Read Holding Registers (0x03)	
5.2.2.2. Read Input Registers (0x04)	
5.2.2.3. Read & Change Parameters (0x46)	
5.2.2.4. Restart Communication Command (0x08)	20
6. Specifications	21
6.1. Technical Specifications	21
6.2. External Sensor Specifications	21
7. Terms of Warranty	21
8. Additional Documents and Software	
	22

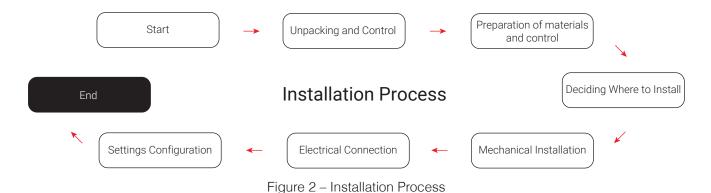
1. Introduction

Dual Orientations Irradiance Sensor is a product of from the SEVEN meteorological sensors range of professional and intelligent measuring sensors with digital interface for environmental and industrial applications.

Figure 1 – Dual Orientations Irradiance Sensor

It is a weather station with measures of irradiance, temperature and wind speed. All measured meteorological data is transferred to dataloggers and receiver units via a 2-wire RS485 bus with Modbus RTU protocol.

The flexible design of the Dual Orientations Irradiance Sensor makes it possible to select external sensors according to the required parameters in meteorological applications.


SEVEN products use reliable and high-quality instruments to provide accurate meteorological information in environmental and industrial applications.

Note: SEVEN reserves the right to make changes in this entire document withhout prior notice.

2. Dual Orientations Irradiance Sensor Installation

It is suggested that the system be operated at ground level to make sure that all components are working properly prior to installation. A general diagram of the progress of the installation steps is given below.

2.1. Unpacking and Control

Upon receipt of the product, it must be carefully checked whether the package content is complete. Seven Sensor Solutions must be contacted if any of the components are missing, damaged or defective.

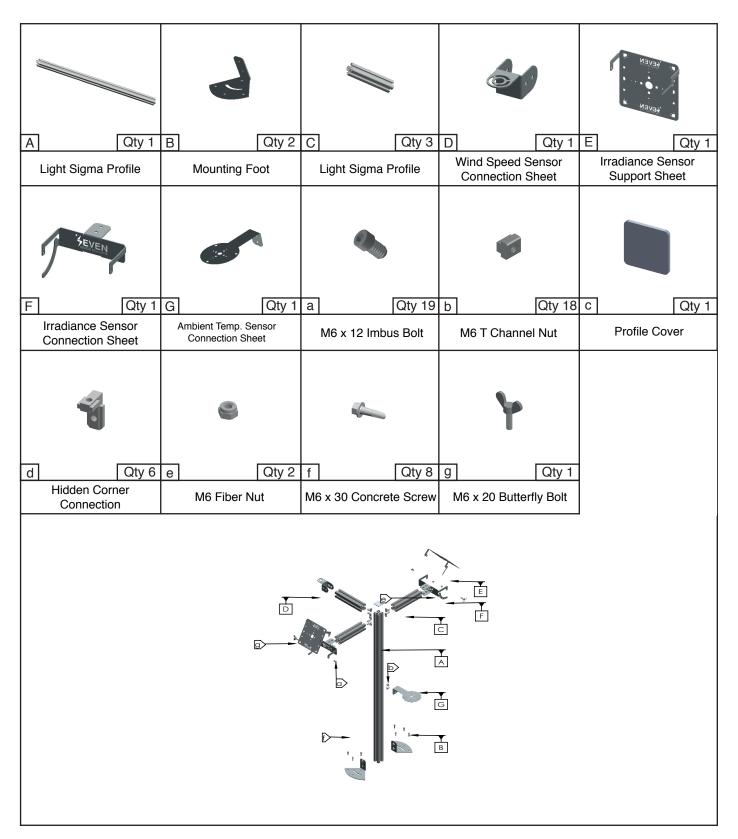


Figure 3 – Mounting Structure Packing List

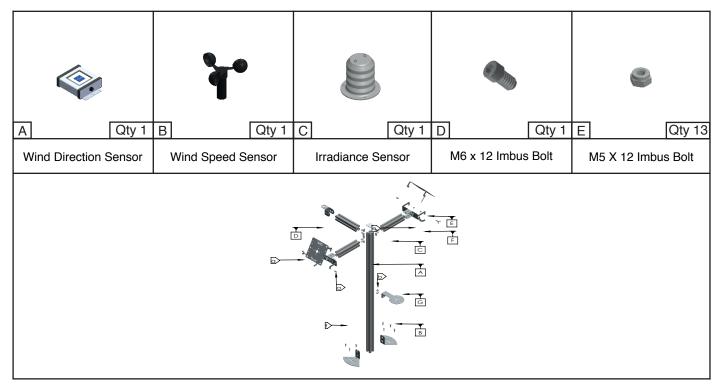


Figure 4 – Installation Process

Note: Quantity and content of the received material may be different based on customer confirmed order.

2.2. Site Requirements and Considerations

When the Dual Orientations Irradiance Sensor is to be mounted on a rooftop, it should preferably be mounted on the prevailing wind side of the building. It should also be avoided to place the station near any heat source such as chimneys or ventilation.

The Dual Orientations Irradiance Sensor needs to be in the same direction and the same inclination as the solar panels. They should be positioned in the same or higher plane than the solar panels. The azimuth angle can be adjusted with a compass by rotating the mounting structure on its axis and the tilt angle can be adjusted with the protractor on the mounting structure.

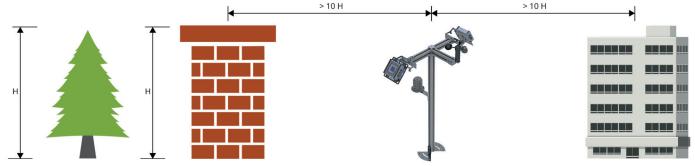


Figure 5 - Installation Site Selection

When the Dual Orientations Irradiance Sensor is to be mounted on a rooftop, it should preferably be mounted on the prevailing wind side of the building. It should also be avoided to place the station near any heat source such as chimneys or ventilation.

The Dual Orientations Irradiance Sensor needs to be in the same direction and the same inclination as the solar panels. They should be positioned in the same or higher plane than the solar panels. The azimuth angle can be adjusted with a compass by rotating the mounting structure on its axis and the tilt angle can be adjusted with the protractor on the mounting structure.

Figure 6 – Protractor on the Mounting Structure

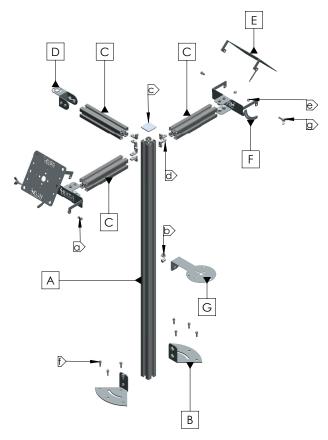
Note: To facilitate the maintenance and cleaning of the Dual Orientations Irradiance Sensor must be installed in an easily accessible location, especially for rooftop projects.

The Module Temperature Sensors must be installed at the exact midpoint of the solar panel. A sensor location should be chosen in the center of the cell closest to the exact midpoint of the module, avoiding the boundaries between cells. Module Temperature Sensors Installation Manual can be relieved for more detail.

2.3. Preparation of Materials to be Used in Installation

The materials needed during installation are provided by SEVEN. The user should only prepare the following hand tools and personal protective equipment.

Figure 7 – Materials to be Used in Installation



2.4. Installation

3S-2IS Dual Orientations Irradiance Sensor installation can be handled in 2 steps. Firstly, the **Dual Orientations Irradiance Sensor** mounting structure must be installed. Then the sensors must be fixed to the mounting structure. The installation can be easily completed by a qualified electrician by following SEVEN instructions.

2.4.1. Mounting Structure

The installation of the mounting structure in which the sensors are to be mounted is very simple and fast.

No	Part Name	Definition	Qty
Α	Light Sigma Profile	K8 - 40 x 40 x 1000 mm Aluminum	1
В	Mounting Foot	3 mm Chrome	2
С	Light Sigma Profile	K8 - 40 x 40 x 200 mm Aluminum	3
D	Wind Speed Sensor Connection Sheet	1,5 mm Chrome	1
E	Irradiance Sensor Connection Sheet	2 mm Chrome	2
F	Irradiance Sensor Support Sheet	1,5 mm Chrome	
а	M6 x 12 Imbus Bolt	Stainless	20
b	M6 T Channel Nut	Stainless	18
С	Profile Cover	K8 - 40 x 40 mm Plastic	1
d	Hidden Corner Connection	30 x 30 mm Aluminum	6
e	M6 Fiber Nut	Stainless	4
f	Concrete Screw	M6 x 30 mm	8
g	M6 x 20 Butterfly Bolt	Aluminum	2

2.4.2. External Sensors

The external sensors must be fixed to the mounting structure as shown below, after the installation of the mounting structure is completed.

No	Part Name	Definition	Qty
Α	Irradiance Sensor	Aluminum	2
В	Wind Speed Sensor	Anodized Aluminum Housing – ABS Cup	1
С	Ambient Temperature Sensor	ABS	1
а	M6 x 12 Imbus Bolt	Stainless	20
b	M6 T Fiber Nut	Stainless	18

2.5. Inspection and Maintenance

Dual Orientations Irradiance Sensor is not requiring any maintenance or changing of spare parts. However, the cleaning of the solar cell surface should be done periodically according to the standard which follow for site monitoring. The surface of the solar cell glass can be gently cleaned with a soft cloth and soapy water.

Fastener tightness and cable conditions, looking for damage, deterioration, or disconnection of sensors and electrical enclosures, soiling or displacement of optical sensors, evidence of moisture or vermin in enclosures, loose wiring connections, detachment of temperature sensors, embrittlement of attachments and other potential problems, should be checked periodically.

Note: We recommend to use thread-locking fluid for fasteners.

According to IEC 61724-1:2021, the monitoring system should be inspected at least annually and preferably at more frequent intervals.

3. Test and Calibration

SEVEN delivers all Dual Orientations Irradiance Sensors with calibration certificates.

Each irradiance sensor is calibrated under Class AAA Sun Simulator according to IEC 60904-2 and IEC 60904-4 standards by using a reference cell calibrated by Institute for Solar Energy Research (ISFH) in Germany.

Each irradiance sensor is tested under natural sunlight by using a reference cell calibrated by the Fraunhofer Institute for Solar Energy Systems ISE in Germany.

3.1. Recalibration

Recalibration of irradiance sensors according to IEC 61724-1 standard shall be conducted in a manner that minimizes downtime and sensor outages in order to prevent interruption of monitoring.

Effective methods may include:

- Exchanging installed sensors with new or recalibrated sensors
- · Performing on-site recalibration of sensors where possible
- Providing redundant sensors and alternating laboratory recalibration schedules.

According to IEC 61724-1 standard, "for Class A systems, irradiance sensors shall be recalibrated once every 2 years, or more frequently per manufacturer recommendations. For Class B systems, recalibrate irradiance sensors according to manufacturer recommendations."

The recommended recalibration period is at least once every 3 years from the installation of the irradiance sensors in the site.

4. Connections

External sensors are designed with the Plug & Run principle. The sensor connection box has waterproof and UV resistant connectors. Each external sensor has a different pin configuration, so wrong connection is not possible. The minimum bending radius at cables is 5 mm.

Connector Assignment for External Sensors			
Wind Speed Sensor 2 pin Connector			
Module Temperature Sensor	4 pin Connector		
Plane of Array Irradiance Sensor	6 pin Connector		
Ambient Temperature Sensor 5 pin Connector			

The supply voltage for the Dual Orientations Irradiance Sensor is 12 - 30 V DC. Operation with a supply voltage of 24 V is recommended.

The Dual Orientations Irradiance Sensor has an electrically isolated, half-duplex, 2 wire RS485 interface for configuration, communication and the firmware update.

The communication and power cable of Dual Orientations Irradiance Sensor should be always laid separated from AC/DC cables.

Note: The installation and electrical connections of SEVEN sensors should be carried out by a qualified electrician.

Wire Assignment for Power & Communication			
RS485 A / Data (+)	Green		
RS485 B / Data (-)	Yellow		
Positive Supply Voltage	Brown		
Supply Voltage Ground	White		

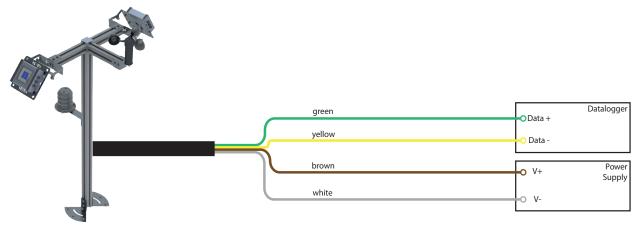


Figure 8 – Wire Assignment for Power & Communication

5. Configuration and Communication

Once the Dual Orientations Irradiance Sensor has been installed and connected correctly, the sensor begins autonomously to take measurements.

Attention must be paid to the following points:

- A measurement request should be made to the Dual Orientations Irradiance Sensor with the 3S-2IS Configuration Tool and it should be checked whether it correctly operation in the site.
- If several Modbus Device are operated on a network, a unique device ID must be assigned to each device. Follow SEVEN instructions to configure the Dual Orientations Irradiance Sensor on dataloggers.

5.1. 3S-2IS Configuration Tool

3S-2IS Configuration Tool is a software tool for testing communication and adjusting Modbus parameters on the Dual Orientations Irradiance Sensor. The 3S-2IS Configuration Tool can also be used to update the firmware of the Dual Orientations Irradiance Sensor.

A Windows® PC with a serial bus interface set as a serial COM port, 3S-2IS Configuration Tool software, and USB to RS485 Converter are required for configuration and testing purposes.

Download the software 3S-2IS Configuration Tool and install it on your computer. Download link is below. https://www.sevensensor.com/files/3s-configuration-tool-v2.0.zip

Note: If the serial COM port does not appear when the 3S-2IS Configuration Tool is connected to the computer via USB to RS485 Converter, the serial COM port driver must be updated.

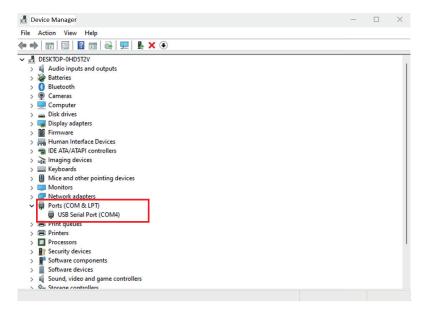


Figure 9 - Serial COM Port

Note 2: Make sure to always use the correct and current version of the 3S-2IS Configuration Tool for Dual Orientations Irradiance Sensor configuration.

5.1.1. Establishing Connection

The 3S-IS and 3S-IS-LR Irradiance Sensors are connected to the computer via USB to RS485 Converter by making a cable connection as described in the "4. Connections" section. After launching the 3S-IS Configuration Tool, the following screen will appear.

Figure 10 – 3S-IS Configuration Tool

Follow the steps below to connect to the Dual Orientations Irradiance Sensor with the 3S-2IS Configuration Tool.

- Select the serial COM port to which the USB to RS485 converter is connected.
- Enter the Modbus ID, Baud rate and Parity of the Dual Orientations Irradiance Sensor in the "Actual" section of the "Communication Settings".
- Click on "Connect".

Note: Factory defaults of the Irradiance Sensor: Modbus ID 1, Baud rate 9600, Parity none/1.

Once the connection is successfully completed, the data received from the device will be displayed in the "Sensor Data" section. Irradiance Sensor details can be found in the "Device Information" section.

5.1.2. Change the Modbus Parameters

To change the Modbus parameters (Modbus ID, Baud rate and Parity) of the device, enter the values you want to assign in the "New" section of the "Communication settings" and click on "Write and Reset".

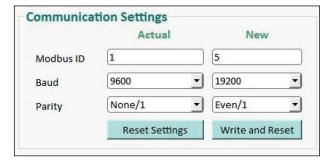


Figure 11 - Changing Modbus Parameters

5.1.3. Find the Modbus Parameters

If Modbus parameters are changed and the connection cannot be established with the device, the following steps should be followed to find the Modbus parameters of the Dual Orientations Irradiance Sensor.

Modbus parameters of device can be found with "Scan" button in the "Port Settings" section.

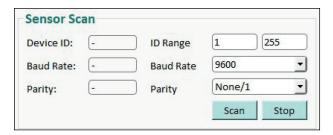


Figure 12 - Finding Modbus Parameters

• When the search is completed and the Modbus parameters of the device are found, a message "Sensor Device is connected" (as in Figure 13) will appear on the desktop. The found parameters are filled in automatically.

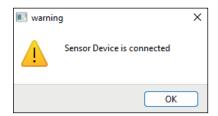


Figure 13 - Sensor Device is connected

Reconnect with the "Connect" button.

5.1.4. Entering the Number of Modules

In the "Number of Modules" section, enter the number of panels for the two directions on the site and click "Write".

Figure 14 – Entering the Number of Modules

Note: Modbus parameters search can be stopped at any time with the "Stop Scan" button.

5.1.5. Firmware Update

Dual Orientations Irradiance Sensor firmware can be updated by SEVEN depending product developments. SEVEN provides this updated firmware to users free of charge. If the Dual Orientations Irradiance Sensor firmware needs to be updated, the following steps should be followed.

- Clicking on the "Select File" button in the "Firmware Update" section, the current firmware file with the ".bin" extension is selected.
- The firmware update is started with the "**Update Firmware**" button. The update process is confirmed in the pop-up message box and can be followed on the loading bar.

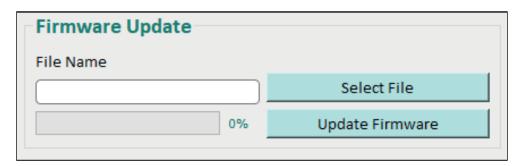


Figure 15 – Software Update Process

• After the firmware update process is completed, reconnection can be established clicking on the "Connect" button.

Note: Please contact SEVEN sales team for the current firmware version.

5.2. Modbus RTU Specifications

5.2.1. Supported Bus Protocol

The Dual Orientations Irradiance Sensor is equipped with an RS-485 communication port that supports Modbus RTU commands. The Dual Orientations Irradiance Sensor can be configured to operate in different communication parameters. The table that follows describes each supported bus protocol.

Baud Rate	4800, 9600, 19200, 38400	
Parity	None, Even, Odd	
Stop Bit	1, 2 (only at None parity)	
Factory Default	9600 Baud, 8N1, address: 1	

5.2.2. Supported Function Codes

The Dual Orientations Irradiance Sensor supports a specific subset of Modbus RTU commands. The table that follows lists each supported function code.

0x03	Read Holding Registers
0x04	Read Input Registers
0x46	Read & Change Parameters
0x08	Diagnostics

Note: All checksums of the Modbus protocol are omitted in this document. These checksums must always be calculated and sent during communication.

5.2.2.1. Read Holding Registers (0x03)

The 3S-IS and 3S-IS-LR Irradiance Sensors support a specific subset of Modbus RTU commands. The table that follows lists each supported function code.

Master Request:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x03
Start Register	2 Byte (Big Endian)	see register table below
End Register	2 Byte (Big Endian)	see register table below

Slave Response:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x03
Number of Bytes	1 Byte	0 to 255 (2xN) N = Number of Registers
Data	2 Byte x N (Big Endian)	see register table below

Holding Register Map

The Dual Orientations Irradiance Sensor holding register map is based on the "SunSpec Alliance" communication standards.

Start	End	Value	Туре	Units	Scale Factor	Constant
40000	40001	SunSpec ID	uint32	N/A	N/A	"SunS"
40002	40002	SunSpec Device ID	uint16	N/A	N/A	0x0001
40003	40003	SunSpec Length	uint16	Registers	N/A	65
40004	40019	Manufacturer	String (32)	N/A	N/A	"SevenSensor"
40020	40035	Model	String (32)	N/A	N/A	"3S-2IS"
40036	40043	Hardware Version	String (16)	N/A	N/A	"2.0"
40044	40051	Software Version	String (16)	N/A	N/A	"2.0"
40052	40067	Serial Number	String (32)	N/A	N/A	"23.12.345.65.0013"
40068	40068	Device ID	uint16	N/A	N/A	1
		Sunspec Devic	e Model Measuremen	t Registers		
40069	40069	Block ID	int16	N/A	N/A	307
40070	40070	Length	int16	Registers	N/A	11
40071	40071	Air Temperature	int16	°C	0.1	Measured
40074	40074	Wind Speed	int16	m/s	0.1	Measured
		Irrad	iance Model Registers	S		
40082	40082	Block ID	int16	N/A	0	302
40083	40083	Length	int16	Registers	0	5
40084	40084	Plane of Array	uint16	W/m²	0.1	Measured
40085	40085	Plane of Array 2	Uint16	W/m²	0.1	Measured
40086	40086	Diffuse Irradiance	uint16	W/m²	0	N/A
40087	40087	Direct Irradiance	uint16	W/m²	0	N/A
40088	40088	Total Effective Irradiance	uint16	W/m²	0	Measured

	Back of Module Temperature Registers					
40089	40089	Block ID	int16	N/A	N/A	303
40090	40090	Length	int16	Registers	N/A	3
40091	40091	Module Temperature Total Effective Modul Temperature	int16	°C	0.1	Measured
40092	40092	Modul Temp 1	int16	°C	0.1	Measured
40093	40093	Modul Temp 2	int16	°C	0.1	Measured
		Device Mo	del Measurement Reg	gisters		
40093	40093	Block ID	int16	N/A	N/A	308
40094	40094	Length	int16	Registers	N/A	5
40095	40095	Total Effective Irradiance	int16	W/m²	0.1	N/A
40096	40096	Modul Temp1	int16	°C	0.1	Measured
40097	40097	Modul Temp2	int16	°C	0.1	N/A
40098	40098	Wind Speed	int16	m/s	0.1	Measured
40099	40099	Air Temperature	int16	°C	0.1	Measured
		Device Mo	del Measurement Rec	jisters		
40100	40100	End of SunSpec Block	uint16	N/A	N/A	0xFFFF
40101	40101	Length	uint16	Registers	0	0
40102	40102	Plane of Array Total Effective Irradiance	int16	W/m²	0.1	Measured
40103	40103	Module Temp1	int16	°C	0.1	Measured
40104	40104	Module Temp2	int16	°C	0.1	Measured
40105	40105	Wind Speed	int16	m/s	0.1	Measured
40106	40106	Air Temperature	int16	°C	0.1	Measured
End of Block Registers						
40107	40107	End of SunSpec Block	uint16	N/A	N/A	0xFFFF
40108	40108	Length	uint16	Registers	0	0
	Device Address Read/Write Register					
40109	40109	Modbus ID – Write Register	uint16	N/A	N/A	1

5.2.2.2. Read Input Registers (0x04)

Master Request:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x04
Start Register	2 Byte (Big Endian)	see register table below
End Register	2 Byte (Big Endian)	see register table below

Slave Resonse:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x04
Number of Bytes	1 Byte	0 to 255 (2xN) N = Number of Registers
Data	2 Byte x N (Big Endian)	see register table below

Input Register Map

A common input register map has been created for all SEVEN Modbus devices. All data marked in bold in the common input register map below are defined for Dual Orientations Irradiance Sensor.

Note: Values marked as "raw data" are for information only and should not be used for serial applications.

The following Modbus data marked in bold can be read individually or in blocks.

ID-Dec	ID-Hex	Value	Range	Resolution
30000	0x00	Irradiance 1	01600 W/m²	0.1 W/m ²
30001	0x01	Irradiance 2	01600 W/m²	0.1 W/m²
30002	0x02	Total Effective Compensated Irradiance	01600 W/m²	0.1 W/m ²
30003	0x03	Temperature Compensated Irradiance 1	01600 W/m²	0.1 W/m ²
30004	0x04	Temperature Compensated Irradiance 2	01600 W/m²	0.1 W/m ²
30005	0x05	mV Value of Irradiance 1 (raw data)	-	0.01 mV
30006	0x06	Temperature Compensated Irradiance 1	01600 W/m ²	0.1 W/m ²
30007	0x07	Temperature Compensated Irradiance 2	01600 W/m²	0.1 W/m²
30008	0x08	Digit Value of the ADC 2 (raw data)	04096	1
30009	0x09	Internal Cell Temperature 1	-40+85 °C	0.1°C
30010	0x0A	Internal Cell Temperature 2	-40+85 °C	0.1°C
30011	0x0B	Module Temperature 1	-40+85 °C	0.1°C
30012	0x0C	Total Effective Temperature Compansated Irradiance	01600 W/m²	0.1 W/m²
30013	0x0D	Total Effective Module Temperature	-40+85 °C	1°C
30014	0x0E	Ambient Temperature	-40+85 °C	0.1°C
30015	0x0F	Internal Temperature 1	-40+85 °C	0.1°C
30016	0x10	Internal Temperature 2	-40+85 °C	0.1°C
30017	0x11	Wind Speed	040 m/s	0.1 m/s
30018	0x12	Wind sensor number of pulses since last modbus read out (high-word) (raw data)	Pulse	1
30019	0x13	Wind sensor number of pulses since last modbus read out (low-word) (raw data)	Cycle	1
30020	0x14	Wind Direction	0359°	1
30021	0x15	Total Effective Module Temperature	-40+85 °C	0.1°C
30022	0x16	Module Temperature 1	-40+85 °C	0.1°C
30023	0x17	Module Temperature 2	-40+85 °C	0.1°C
30024	0x18	Daily Average Soiling Ratio	0100%	0.1%
30025	0x19	Stable Data Counter	-	1
30026	0x1A	Solar Noon Time Hour	Hour	1
30027	0x1B	Solar Noon Time Minute	Minute	1
30028	0x1C	Rain Gauge (Min)		0.1 mm/min
30029	0x1D	Ambient Temperature	-40+85 °C	0.1°C
30030	0x1E	Irradiance 3	01600 W/m²	0.1 W/m²
30031	0x1F	Irradiance 4	01600 W/m²	0.1 W/m²
30032	0x20	Temperature Compensated Irradiance 3	01600 W/m²	0.1 W/m²
30033	0x21	Temperature Compensated Irradiance 4	01600 W/m²	0.1 W/m²
30034	0x22	mV Value of Irradiance 3 (raw data)	-	0.01 mv
30035	0x23	mV Value of Irradiance 4 (raw data)	-	0.01 mv
30036	0x24	Digit Value of the ADC 3 (raw data)	04096 (raw data)	1
30037	0x25	Digit Value of the ADC 4 (raw data)	04096 (raw data)	1
30038	0x26	Internal Cell Temperature 3	-40+85 °C	0.1°C
30039	0x27	Internal Cell Temperature 4	-40+85 °C	0.1°C
30040	0x28	Module Temperature 3	-40+85 °C	0.1°C
30041	0x29	Module Temperature 4	-40+85 °C	0.1°C
30042	0x2A	Albedo	01	0.001
30053	0x35	Wind Speed	040 m/s	0.1 m/s

Additionally, the following internal data marked in bold can be read individually or in blocks.

30060	0x3C	Hardware	e Version	Range
30061	0x3D	Software	e Version	
30062	0x3E	Calibration Value 1		
30063	0x3F	Calibratio	on Value 2	
30064	0x40	Temperature Co	efficient Value 1	
30065	0x41	Temperature Co	pefficient Value 2	
30066	0x42	ADC Offs	et Value 1	
30067	0x43	ADC Offs	et Value 2	
30068	0x44	Temperature	Sensor Count	
30069	0x45	Number o	of Module	
30070	0x46	T90 v	value	
30071	0x47	Wind Speed	Offset Value	
30072	0x48		Production Day	
30073	0x49		Production Month	
30074	0x4A	Serial Number	Production Year	
30075	0x4B	Seriai Nulliber	Board Serial Number	
30076	0x4C		Box Serial Number	Manufacturer Parameters
30077	0x4D		Sensor Serial Number	Read Only
30078	0x4E		Production Day	
30079	0x4F	Production Date	Production Month	
30080	0x50		Production Year	
30081	0x51		Calibration Day 1	
30082	0x52	Calibration Date 1	Calibration Month 1	
30083	0x53		Calibration Year 1	
30084	0x54		Calibration Day 2	
30085	0x55	Calibration Date 2	Calibration Month 2	
30086	0x56		Calibration Year 2	
30087	0x57		Calibration Day 3	
30088	0x58	Calibration Date 3	Calibration Month 3	
30089	0x59		Calibration Year 3	
30090	0x5A		Calibration Day 4	
30091	0x5B	Calibration Date 4	Calibration Month 4	
30092	0x5C		Calibration Year 4	
30110	0x6E	Module Rate 1		
30111	0x6F	Module Rate 2		
30112	0x70	Analog Sensor Selection		
30113	0x71	Wind Speed Sensor Offset Value		User Parameters
30114	0x72	Wind Speed Sensor Slope High Value		Read / Write
30115	0x73	Wind Speed Sensor Slope Low Value		
30116	0x74	Wind Speed Sensor Interval Value		
30117	0x75	Wind Direction Enable Selection		

5.2.2.3. Read & Change Parameters (0x46) Sub Function (0x04): Write Device Address

Master Request:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x46
Sub Function Code	1 Byte	0x04
New Address	1 Byte	1 to 247

Slave Response:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x46
Sub Function Code	1 Byte	0x04
New Address	1 Byte	1 to 247

Sub Function (0x06): Write Communication Parameters

Master Request:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x46
Sub Function Code	1 Byte	0x06
New Baud Rate	1 Byte	0 to 3, see table below
New Parity / Stop Bit	1 Byte	0 to 3, see table below

Slave Response:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x46
Sub Function Code	1 Byte	0x06
New Baud Rate	1 Byte	0 to 3, see table below
New Parity / Stop Bit	1 Byte	0 to 3, see table below

Note: When the "Write Communication Parameters" command is used, the "Write Device Address" command must also be used before the restart communication command.

Communication Parameter Settings

Additionally, the following internal data marked in bold can be read individually or in blocks.

Baud Rate	Value	Parity / Stop Bit	Value
4800	0	None/1	0
9600	1	None/2	1
19200	2	Odd	2
38400	3	Even	3

Sub Function (0x07): Read Hardware & Software Versions

Master Request:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x46
Sub Function Code	1 Byte	0x07

Slave Response:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x46
Sub Function Code	1 Byte	0x07
Hardware Version	2 Byte (Little Endian)	0 to 65535
Software Version	2 Byte (Little Endian)	0 to 65535

Sub Function (0x08): Read Serial Number - Production Date - Calibration Date

Master Request:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x46
Sub Function Code	1 Byte	0x08

Slave Response:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x46
Sub Function Code	1 Byte	0x08
Production Year	1 Byte	0 to 99
Production Code	1 Byte	0 to 99
Cell Serial Number	2 Byte (Little Endian)	0 to 999
Board Serial Number	1 Byte	0 to 99
Box Serial Number	1 Byte	0 to 99
Sensor Serial Number	2 Byte (Big Endian)	0 to 9999
Production Day	1 Byte	1 to 31
Production Month	1 Byte	1 to 12
Production Year	1 Byte	0 to 99
Calibration Day 1	1 Byte	1 to 31
Calibration Month 1	1 Byte	1 to 12

Slave Response:

Calibration Year 1	1 Byte	0 to 99
Calibration Day 2	1 Byte	1 to 31
Calibration Month 2	1 Byte	1 to 12
Calibration Year 2	1 Byte	0 to 99
Calibration Day 3	1 Byte	1 to 31
Calibration Month 3	1 Byte	1 to 12
Calibration Year 3	1 Byte	0 to 99
Calibration Day 4	1 Byte	1 to 31
Calibration Month 4	1 Byte	1 to 12
Calibration Year 4	1 Byte	0 to 99

5.2.2.4. Diagnotics (0x08)

Master Request:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x08
Restart Code	4 Byte	0x00000000

Slave Response:

Address	1 Byte	1 to 247
Function Code	1 Byte	0x08
Restart Code	4 Byte	0x0000000

6. Specifications

3S-2IS measures the Plane of Array Irradiance, Module & Ambient Temperature and Wind Speed. The Dual Orientations Irradiance Sensor provides these measurements as a digital output.

The Dual Orientations Irradiance Sensor must be used in combination with suitable power supply and a data acquisition system which uses the Modbus communication protocol via RS485. It is equipped with a RS485 communications port that supports a subset of Modbus RTU commands. Baud rates of 4800, 9600, 19200, and 38400 are supported. Holding and input registers are supported.

The Dual Orientations Irradiance Sensor should be powered from an external power supply. The power supply input is nominally rated for 24 V DC but can accept a voltage in the range of 12 to 30 V DC. The inputs are reverse polarity and surge protected. The power supply and RS485 bus are isolated from each other.

The instrument is classified according to IEC 61724-1 and should be used in accordance with the recommended practices of IEC, WMO and ASTM.

6.1. Technical Specifications

General Specifications		
Measured Data	Plane of Array Irradiance, Module & Ambient Temperature and Wind Speed.	
Standards	Compliant to IEC 61724-1:2021	
Digital Outputs	RS485 up to 38400 Baud	
Communication Protocol	Modbus RTU (Optional Modbus TCP/IP)	
Output Rate	1/s	
Operating Temperature Range	-40°C to +85°C	
Mounting Structure	Aluminum & Stainless Steel	
Dimensions	630 x 860 x 1285 mm (W x L x H) (Height can be changed as per request)	
Weight	5.8 kg	
IP Rating	IP 54 (Optional IP 67)	
Power Supply	12 to 30 V DC	
Power Consumption	25 mA @ 24 V DC	
Electrical Connection	3 m LIYYC11Y PUR Cable, UV and weather resistant	
Galvanic Isolation	1000 V between power supply and RS485 Bus	
Origin	TÜRKİYE	

6.2. Sensor Specifications

Irradiance Sensor

Sensor Type Silicon Reference Cell (31 x 31 mm)

Range 0 to 1600 W/m2

Resolution 0.1 W/m2

Standard Class A according to IEC 61724-1

Calibration according to IEC 60904

Module & Ambient Temperature Sensors

Sensor Type PT1000

Range -40°C to +85°C

Accuracy ± 0.1 °C Resolution 0.1°C

Standard Class A according to IEC 60751:2022

Wind Speed Sensor

Sensor Type Cup Star Anemometer (Reed Relay)

Range 0.9 to 40 m/s

Accuracy \pm 0.2 m/s or \pm 2% of measuring value

Resolution 0.1 m/s wind run

Threshold 0.9 m/s

Standard Compliant to IEC 61724-1:2021

7. Terms of Warranty

Limited Sensor Warranty

SEVEN Sensor Solutions guarantees that its products comply with the specifications published by SEVEN, and are completely free from all manufacturer defects for a period of 2 years from the invoice date.

Solutions for The Manufacturing Defects

SEVEN commits to the clients to repair or replace the defective sensor if the problem is related to the production.

First; define the problem. Then, prepare a technical report and share the problem with SEVEN technical team, who will to work on resolving this problem.

Clients must return the defective item, part or component to SEVEN with handling shipping charges.

If SEVEN confirms that the sensor has a defect covered by the warranty, the repaired or replaced sensor will be warranted for the remainder of the original sensor warranty period.

Warranty Limitations

- Before using the sensor, clients should determine the suitability of the sensor for its intended use. Thus, the clients assume all risk and responsibilities arising from misuse.
- SEVEN disclaims all responsibilities for any damages arising from the ordinary and improper use of the sensors.
- · SEVEN does not warrant the following;
 - Sensors subjected to misuse, negligence, improper storage, installation or accidental damage.
 - Defects caused by improper or insufficient site preparation and maintenance of the site by the customer.
 - Indirect damages resulting from loss or alteration of data and loss of profits or unrealized savings resulting from these damages.
 - Any damage caused by the use of sensors with other than the original cables and accessories of the sensors.
 - Damage caused by a lack of equipment inspections, lack of timely calibration, and lack of proper maintenance or cleaning.
 - Damage caused by the unauthorized opening of the sensor case.
 - Damage due to natural disasters such as; hail, hurricane storm, flooding, fire, lightning...etc.

Warranty Limitations

Besides, SEVEN reserves the exclusive right to decide, whether a sensor is covered by the warranty or not. A sensor found damaged or defective under warranty may be either repaired or replaced, at the sole discretion of SEVEN. Should a sensor fail prematurely, the replacement sensor is warranted for the remainder of the original sensor warranty period.

8. Additional Documents and Software

The following documents and software can be downloaded from www.sevensensor.com or requested from SEVEN Sensor Solutions.

User Manual This document

Datasheet Dual Orientations Irradiance Sensor brochure

3S-2IS Configuration Tool Windows® software for testing, firmware updates and configuration of the device

Firmware Current device firmware

9. Contact Details

Please feel free to contact us if you face any difficulties during installation or configuration.

Address Pinarcay OSB Mahallesi Organize Sanayi Tesisleri Teknokent Idare Binasi

No: 7, D:1, 19100 Merkez / Corum / Turkey

Phone +90 530 889 8019
Email sales@sevensensor.com
Website www.sevensensor.com